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Motivation
• Ocean Lagrangian coherent vortices, by definition, have the ability to carry particles in

their interior without exchange with surrounding waters. Due to this characteristic, these
vortices efficiently transport water properties (heat, salt, and oxygen) and tracers (oil, larva,
and Sargassum algae) across the ocean.

• Haller and Beron-Vera (2013; HBV13) developed a method to identify Lagrangian
coherent vortices from the velocity field. However, the HBV13 method is computationally
expensive, and its usage is limited to a small community familiar with the algorithm.

• Machine learning allows for faster computation (1s vs. 180s with HBV13) and user-
friendly detection of Lagrangian coherent vortices across the oceanographic community.

The methodology requires the evaluation of a set of trajectories distributed across the domain. The
evolution of those trajectories can be represented with the flow map 𝐹!!

!!"#: 𝒙$ → 𝒙(𝑡; 𝑡$, 𝒙𝟎), which
maps the final position of a 𝑇-long trajectory starting at (𝑥$, 𝑡$).

To identify the structures of a flow field, this Lagrangian method is based on the Cauchy-Green tensor,
which is formed from the derivatives of the flow map operator.

𝐶!!
!!"# 𝒙$ = 𝛻𝐹!!

!!"# 𝒙$ &𝛻𝐹!!
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The eigenvectors of 𝐶!!
!!"# 𝒙$ represents the stretching direction of the flow at 𝑥$ during the 

trajectories. Similarly, the eigenvalues of the tensor represents the stretching magnitude. In two 
dimension, the Cauchy-Green tensor is a two-by-two matrix, so it has 2 sets of eigenvectors (𝜉', 𝜉() and 
eigenvalues (𝜆', 𝜆() defined at each initial position 𝒙$.

Lagrangian Coherent vortices are identified as material loops that defy the typical exponential 
stretching occurring in unsteady fluids. Such loops 𝑟 𝑠 are closed trajectories of the vector field 𝜂)

±

and uniformly stretch by some amount 𝜆. The 𝜂)
± field is formed from a combination of both 

eigenvectors and eigenvalues of 𝐶!!
!!"# 𝒙$ , as follows:
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The last step of the methodology is to integrate 𝑟+ 𝑠 and identify outermost limit cycles of 𝜂)
± across

the domain. To speed up this process, we used a methodology described in Karrasch et al. (2015), which
allows to efficiently identify locations where coherent eddies can be present, hence speeding up
calculations.

Identifying Lagrangian coherent vortices (HBV13)

Figure 1. Altimetry sea 
surface temperature. 
Walker et al. (2013).

Figure 2. Lagrangian 
coherent vortex 
boundaries (yellow 
contours) during the 
2010 Deepwater Horizon 
(black diamond) oil spill. 
Hiron et al. (2022)

Figure 4. Altimetry Sea Surface
Height (SSH; CMEMS Copernicus).
The yellow lines show the vortices
that remained Lagrangian coherent
for 14 days (from 11 June 2010 to 25
June 2010), and the white arrow
indicates the vortex responsible for
attracting and trapping oil during the
2010 Deepwater Horizon oil spill.
The black diamond indicates the
location of the Deepwater Horizon
oil rig.
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Results

• We employ a variation of the U-Net architecture (Ronneberger et al., 2015) to detect the 
area of Lagrangian coherent vortices from altimetry SSH maps of the Gulf of Mexico.

• The network is trained with contours detected by the HBV13 method for years 2010, 2015, 
and 2018 and uses the first 60 days of 2020 as the validation set. 

• The learning is performed with an Adam optimizer with a learning rate of 0.001 and a 
scheduler. The learning stops when the validation error does not improve in 100 epochs.

• The loss function is 1 – the Dice Similarity Coefficient, given by 1 − (,∩.
,∪.

. A and B 
represent masks of filled contours of the detected eddies. 

Main findings:
• Introducing more data reduces the validation loss more effectively than incorporating additional sea surface height maps 

into the model. Each training takes approximately 15 minutes on an NVIDIA A100 GPU with preprocessed inputs. 
• The proposed technique can successfully identify more than half of the ocean vortices that maintained Lagrangian 

coherence for fourteen days, relying solely on current SSH information, which is not possible with the HBV13 method. 
• The machine learning approach identifies vortices significantly faster, achieving speedups of up to two orders of magnitude

(1s with ML vs. 180s with a Julia implementation of HBV13).
• This method also demonstrates generalizability across different dynamical states within the Gulf of Mexico. 

Application: Oil transport (e.g., 2010 Deepwater Horizon oil spill), Sargassum and larva transport, and fisheries.

Future work: The model will be trained using all altimetry data available from 1992-2022 (20% will be left out for validation)

Figure 6. (Left) Altimetry sea surface
height and vortex boundaries with 14
days of Lagrangian coherence (red).
(Right) Mask of the vortices detected
using the U-Net machine learning model
trained with years 2010, 2015, and 2018,
superposed with the solution from
HBV13 (red).

Figure 5. Validation loss for
multiple trainings using different
input data. The colors indicate the
three sets of experiments.
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