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Introduction

Over the last twenty five years, many satellite-tracked surface drifters
sampled the surface of the Gulf of Mexico (GoM). From a database
of 3300 drifters, we presented a Lagrangian geography of the GoM.

Figure: Published in miron2017lagrangian
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Introduction

In contrast, very few studies were aimed at the characterization of
the deep water global circulation.

RAFOS experiments sponsored by the Bureau of Ocean Energy Man-
agement (BOEM) (July 2011 - May 2015) courtesy Alexis Lugo
Fernandez:

I 121 floats at 1500 m

I 31 floats at 2500 m

I 4-year mission (floats ∼ 2-y mission and are redeployed)

2 / 19



Objectives

Using floats data (trajectories) in the abyssal Gulf of Mexico (GoM):

I subdivide the deep GoM into regions with similar dynamics;

I identify sinks and sources (attractors and basins of attraction);

I predict transport of passive tracers.
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Theory: flowmap F

Given the drifter paths, we wish to access the map x 7→ F (x) that
determines how the drifters change positions.

If the ocean flow was stationary in some statistical sense, then the
velocity could be express has v(x). If this case, we could simply
solve the ODE ẋ = v(x) to get F , the flow map, and move around
any function, such has a tracer distribution f (x).
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Theory: transfer operator P

This is done by composing f with F−1 and it defines a transfer
operator P as the linear operator such that

Pf (x) = f ◦ F−1(x). (1)
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Theory: transfer operator P
This is done by composing f with F−1 and it defines a transfer
operator P as the linear operator such that

Pf (x) = f ◦ F−1(x). (1)

Why F−1? Example, if F moves the distribution 2 units to the right.
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Theory: transfer operator P

For F representing a non-autonomous flow as above, Pf (x) is the
solution of

∂tρ+ v · ∇ρ = 0, ρ(x , t = 0) = f (x). (2)

In our case, F is unknown and we only have access to trajectories.
We will use a discrete method to approximate P.
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Theory: transition matrix
Partition the domain into equal-size bins {Bi , · · · ,BN} (a regular
grid) and consider the indicator function of set Bi :

1Bi
(x) =

{
1 if x ∈ Bi ,

0 if x /∈ Bi .
(3)

Note that VN := {1B1(x), · · · , 1BN
(x)} is a discrete orthornormal

basis w.r.t. the inner product

〈•, 1Bi
(x)〉 =

1

area(Bi )

∫
Bi

• 1Bi
(x) d2x = (•)Bi

. (4)

Then, project f (x) on the basis VN , called Ulam basis (ulam1960):

ΠN f (x) =
N∑
1

fi1Bi
(x), fi = 〈f (x), 1Bi

(x)〉 = f (x)
Bi

(5)

where ΠN is the projector.
7 / 19



Theory: how to construct the transition matrix

In a similar manner one can project P on VN :

(ΠNP)ij =
1

area(Bj)

∫
Bj

P1Bi
(x) · 1Bj

(x) d2x

=
area(Bi ∩ F−1(Bj))

area(Bi )
=: Pij . (6)

The entries of P can be viewed as transitional probabilities of moving
from Bi to Bj (Markov Chain with bins ≡ states):

Pij =
# of particles in Bi that are mapped to Bj

# of particles in Bi
. (7)
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Theory: transition matrix

Pij gives us the action of F at a coarse-grained level given by the
partition. This introduces diffusion proportional to the size of Bi

and is solution of:

∂tρ+ v · ∇ρ = D∇2ρ with ρ(x , t = 0) = f (x), (8)

with D ∝ area(Bi ).
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Application of the transition matrix

One can push forward discrete representations of f (x):

f = (f1, · · · , fN), (9)

by right-multiplication by P:

f (1) = f P

f (2) = f (1) P = f P2

f (k) = f Pk (10)

Similarly, we push backward an initial distribution using P>.
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Eigenvectors analysis

It is also of interest to identify when a distribution f is almost in-
variant:

f ≈ f P (11)

This is available from the eigenspectrum inspection of P (Froyland
et al., 2012).

If in the matrix P:

I all states communicate;

I no state occurs periodically.

P has a limiting distribution p = pP.

Note: p is a left eigenvector of P with eigenvalue λ = 1 (pλ = pP).
Because of row-stochasticity of P, the corresponding right eigenvec-
tor is 1, i.e., P1 = 1.
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Attractors and basin of attractions

Any distribution f1 supported on the right eigenvector 1 will con-
verge to p as the number of applications of P tends to infinity, i.e.,
limn→∞ f1P

n = p.

For λ = 1:

I right eigenvector of P is the basin of attraction

I left eigenvector of P is the attractor

This motivates the idea that regions where trajectories converge
and their basins of attraction are encoded in the eigenvectors of the
transition matrix P with eigenvalues (λ ≈ 1) (froyland2014well).

12 / 19



Data
Trajectories of the RAFOS cover the area under 1500 m of the Gulf
of Mexico.
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Eigenvectors
Eigenvectors associated with λ1 = 1 and λ2 = 0.9953.
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Eigenvectors
Eigenvectors associated with λ3 = 0.9832 and λ5 = 0.9712.
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Lagrangian geography of the deep Gulf of Mexico
Combination of the basins of attraction from the top right eigenvec-
tors (by thresholding).

Residence timescale: 7-y left (black) and right (purple), 1-y middle
(pink), 0.5-y gyre (yellow) and bottom right (orange)
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Upwelling and Downwelling
From incompressibility, accumulation can be used to approximate
vertical velocity w :

ht1 = ht0
areat0
areat1

w ∼ ht1 − ht0
dt

. (12)

The vertical component is about ∼ 1% of the maximum horizontal
velocity (umax = 0.2739m/s, vmax = 0.1790m/s).
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Comparison with experimental data
(ledwell2016dispersion)

Tracer evolution from the infamous Deepwater Horizon oil spill.

Figure: Initial location of the tracers
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Comparison with experimental data
(ledwell2016dispersion)

Figure: Evolution after 4 months
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Comparison with experimental data
(ledwell2016dispersion)

Figure: Evolution after 12 months
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Thank you!

Future plans:

I plastic sources and convergence zones

I take account inertial effects (see next talk!)

Any questions?
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