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Introduction
RAFOS experiment sponsored by the Bureau of Ocean Energy Man-
agement (July 2011 - May 2015)1:

I 4-year-long program (floats ∼ 2-y mission)
I 121 floats at 1500 m
I 6 profiling floats with RAFOS technology at 1500 m
I 31 floats at 2500 m

1Publicly available data sets compiled by WOCE Subsurface Float Data
Assembly Center (WFDAC).
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Objectives

Using floats data (trajectories) in the abyssal Gulf of Mexico (GoM):

I subdivide the deep GoM into regions with similar dynamics;

I identify almost invariant regions and their respective
timescale;

I assess connectivity.
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Seasonality of the RAFOS Data

The data coverage isn’t sufficient for full seasonal analysis but as-
suming time homogeneity it is enough to build a Markov-Chain
model (Maximenko, Hafner, and Niiler, 2012; Miron et al., 2017;
McAdam and Sebille, 2018).
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Theory: how to construct the transition matrix

By partitioning the domain X into a grid of N regular connected
boxes {B1, . . . ,BN} and with large number of initial conditions we
can estimate the entries:

P ≈ Pij =
#x in Bi at any time t and in Bj at t + T

#x in Bi at any time t
, (1)

which are transitional probabilities of moving from Bi to Bj . It de-
fines a Markov Chain (with bins ≡ states) of the dynamics.

Timescale T is fix at 7-d which is larger then the decorrelation scale
of 5-d and enough to allow interbins connection.
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Application of the transition matrix

One can push forward discrete representations of f (x):

f = (f1, · · · , fN), (2)

under left-multiplication by P:

f (1) = f P

f (2) = f (1) P = f P2

f (k) = f Pk (3)
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Eigenvectors analysis
It is also of interest to identify when a distribution f is almost in-
variant:

f ≈ f P (4)

This is available from the eigenspectrum inspection of P (Froyland,
Horenkamp, et al., 2012).

If in the matrix P:

I all states communicate;

I no state occurs periodically.

P has one λ = 1 a limiting distribution p = pP.

Note: p is a left eigenvector of P (row-stochastic matrix) with eigen-
value λ = 1.

pλ = pP

1λ = P1
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Attractors and basin off attractions

Motivates the idea that regions where trajectories converge and their
basins of attraction are encoded in the eigenvectors of the transi-
tion matrix P with eigenvalues (λ ≈ 1) (Froyland, Stuart, and van
Sebille, 2014).

I right eigenvector of P is the basin of attraction (constrains
connectivity!)

I left eigenvector of P is the attractor or almost-invariant
region
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Eigenvectors
Eigenvectors associated with λ1 = 1 and λ2 = 0.9953.
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Eigenvectors
Eigenvectors associated with λ3 = 0.9832 and λ5 = 0.9712.
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Lagrangian geography of the deep Gulf of Mexico
Combination of the basins of attraction from the top right eigenvec-
tors (by thresholding).
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Connectivity matrix (1 week)
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Connectivity matrix (2 weeks)
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Connectivity matrix (4 weeks)
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Residence time
The time τ for a trajectory in box Bi to move out of A, also known
also as the mean time to hit the complement of A (Norris, 1998).

(Id−P|A)τ/T = 1, (5)

The time on average to reach a given province starting from any
province can be computed using (5) with A set to the target province.
We can see the cyclonic motion on the western region (Pérez-Brunius
et al., 2018).
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Mean expected hitting time (complement of A in (5))

12 / 19



Validation with experimental data (Ledwell et al., 2016)
Tracer mostly spreads along the continental slope and across Eastern
bassin.
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Conclusion

I Assuming 3-d volume conservation, vertical flows over 1 yr is
w = 0.2242 m/d

I Flow is mostly horizontal and ventilated from the Caribbean
Sea (also explains why no float escape?)

I Fast spreading (≈ 1 yr over the eastern part) as observed by
Ledwell et al., 2016

I Main partition is also reveal by the Argo floats

Future plans:

I Evaluation of global circulation from surface drifters (GDP)
and deep water floats (RAFOS, SOFAR & ARGO)
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Main partition from Argo floats
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Push forward in the Eastern corner of the domain
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Eigenvalues cut-off

Look at the effect of random noise in the float trajectories on the
eigenvalues.
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