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Introduction

RAFOS experiment sponsored by the Bureau of Ocean Energy Man-
agement (July 2011 - May 2015)!:

» 4-year-long program (floats ~ 2-y mission)

> 121 floats at 1500 m

> 6 profiling floats with RAFOS technology at 1500 m

> 31 floats at 2500 m
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Publicly available data sets compiled by WOCE Subsurface Float Data
Assembly Center (WFDAC).
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Objectives

Using floats data (trajectories) in the abyssal Gulf of Mexico (GoM):

» subdivide the deep GoM into regions with similar dynamics;

» identify almost invariant regions and their respective
timescale;

> assess connectivity.

N
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Seasonality of the RAFOS Data

The data coverage isn't sufficient for full seasonal analysis but as-
suming time homogeneity it is enough to build a Markov-Chain
model (Maximenko, Hafner, and Niiler, 2012; Miron et al., 2017,
McAdam and Sebille, 2018).
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Theory: how to construct the transition matrix

By partitioning the domain X into a grid of N regular connected
boxes {Bji, ..., By} and with large number of initial conditions we
can estimate the entries:

_ #xin Bjatanytime tandin Bjatt+ T

,P%PU_ ’ (1)

#x in B; at any time t

which are transitional probabilities of moving from B; to B;. It de-
fines a Markov Chain (with bins = states) of the dynamics.

Timescale T is fix at 7-d which is larger then the decorrelation scale
of 5-d and enough to allow interbins connection.
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Application of the transition matrix

One can push forward discrete representations of f(x):

f:(flv"'ny): (2)

under left-multiplication by P:

fO=fp
f@ =W p=rp?
F) = £ Pk (3)



Eigenvectors analysis

It is also of interest to identify when a distribution f is almost in-
variant:

f=fP (4)

This is available from the eigenspectrum inspection of P (Froyland,
Horenkamp, et al., 2012).

If in the matrix P:
» all states communicate;
> no state occurs periodically.
P has one A =1 a limiting distribution p = pP.

Note: p is a left eigenvector of P (row-stochastic matrix) with eigen-
value A = 1.

pA = pP
1A =Pl

6/19



Attractors and basin off attractions

Motivates the idea that regions where trajectories converge and their
basins of attraction are encoded in the eigenvectors of the transi-
tion matrix P with eigenvalues (A ~ 1) (Froyland, Stuart, and van
Sebille, 2014).

» right eigenvector of P is the basin of attraction (constrains
connectivity!)

» left eigenvector of P is the attractor or almost-invariant
region
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Eigenvectors
Eigenvectors associated with A\; = 1 and A = 0.9953.
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Eigenvectors
Eigenvectors associated with A3 = 0.9832 and A5 = 0.9712.
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Lagrangian geography of the deep Gulf of Mexico

Combination of the basins of attraction from the top right eigenvec-
tors (by thresholding).
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Connectivity matrix (1 week)
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Connectivity matrix (2 weeks)
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Connectivity matrix (4 weeks)
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Residence time

The time 7 for a trajectory in box B; to move out of A, also known
also as the mean time to hit the complement of A (Norris, 1998).

(Id=PJa)r/T =1, (5)

The time on average to reach a given province starting from any
province can be computed using (5) with A set to the target province.
We can see the cyclonic motion on the western region (Pérez-Brunius
et al., 2018).
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Mean expected hitting time (complement of A in (5))
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Validation with experimental data (Ledwell et al., 2016)

Tracer mostly spreads along the continental slope and across Eastern
bassin.
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Conclusion

» Assuming 3-d volume conservation, vertical flows over 1 yr is
w =0.2242 m/d

> Flow is mostly horizontal and ventilated from the Caribbean
Sea (also explains why no float escape?)

» Fast spreading (= 1 yr over the eastern part) as observed by
Ledwell et al., 2016

» Main partition is also reveal by the Argo floats
Future plans:

» Evaluation of global circulation from surface drifters (GDP)
and deep water floats (RAFOS, SOFAR & ARGO)
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Main partition from Argo floats
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Push forward in the Eastern corner of the domain
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Eigenvalues cut-off

Look at the effect of random noise in the float trajectories on the
eigenvalues.
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