A Lagrangian geography of the deep Gulf of Mexico

Philippe Miron¹, Francisco J. Beron-Vera¹, María J. Olascoaga¹, Gary Froyland², J. Sheinbaum³ and P. Pérez-Brunius³

¹RSMAS University of Miami, Miami, USA

²University of New South Wales, Sydney, Australia

³CICESE, Ensenada, Mexico

Ocean Sciences Meeting on Wednesday, February 14 2018

UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

Introduction

RAFOS experiment sponsored by the Bureau of Ocean Energy Management (July 2011 - May 2015)¹:

- ► 4-year-long program (floats ~ 2-y mission)
- 121 floats at 1500 m
- 6 profiling floats with RAFOS technology at 1500 m
- 31 floats at 2500 m

¹Publicly available data sets compiled by WOCE Subsurface Float Data Assembly Center (WFDAC).

Using floats data (trajectories) in the abyssal Gulf of Mexico (GoM):

- subdivide the deep GoM into regions with similar dynamics;
- identify almost invariant regions and their respective timescale;
- assess connectivity.

Seasonality of the RAFOS Data

The data coverage isn't sufficient for full seasonal analysis but assuming time homogeneity it is enough to build a Markov-Chain model (Maximenko, Hafner, and Niiler, 2012; Miron et al., 2017; McAdam and Sebille, 2018).

Theory: how to construct the transition matrix

By partitioning the domain X into a grid of N regular connected boxes $\{B_1, \ldots, B_N\}$ and with large number of initial conditions we can estimate the entries:

$$\mathcal{P} \approx P_{ij} = \frac{\#x \text{ in } B_i \text{ at any time } t \text{ and in } B_j \text{ at } t + T}{\#x \text{ in } B_i \text{ at any time } t}, \qquad (1)$$

which are transitional probabilities of moving from B_i to B_j . It defines a **Markov Chain** (with bins \equiv states) of the dynamics.

Timescale T is fix at 7-d which is larger then the decorrelation scale of 5-d and enough to allow interbins connection.

Application of the transition matrix

One can push forward discrete representations of f(x):

$$\mathbf{f} = (f_1, \cdots, f_N), \tag{2}$$

under left-multiplication by P:

$$f^{(1)} = f P$$

$$f^{(2)} = f^{(1)} P = f P^{2}$$

$$f^{(k)} = f P^{k}$$
(3)

Eigenvectors analysis

It is also of interest to identify when a distribution ${\bf f}$ is almost invariant:

$$\mathbf{f} \approx \mathbf{f} P \tag{4}$$

This is available from the *eigenspectrum* inspection of P (Froyland, Horenkamp, et al., 2012).

If in the matrix *P*:

- all states communicate;
- no state occurs *periodically*.

P has one $\lambda = 1$ a limiting distribution $\mathbf{p} = \mathbf{p}P$.

Note: **p** is a left eigenvector of *P* (row-stochastic matrix) with eigenvalue $\lambda = 1$.

$$\mathbf{p}\lambda = \mathbf{p}P$$
$$\mathbb{1}\lambda = P\mathbb{1}$$

Motivates the idea that regions where trajectories converge and their basins of attraction are encoded in the eigenvectors of the transition matrix P with eigenvalues ($\lambda \approx 1$) (Froyland, Stuart, and van Sebille, 2014).

- right eigenvector of P is the basin of attraction (constrains connectivity!)
- left eigenvector of P is the attractor or almost-invariant region

Eigenvectors

Eigenvectors associated with $\lambda_1 = 1$ and $\lambda_2 = 0.9953$.

8/19

Eigenvectors

Eigenvectors associated with $\lambda_3 = 0.9832$ and $\lambda_5 = 0.9712$.

Lagrangian geography of the deep Gulf of Mexico

Combination of the basins of attraction from the top right eigenvectors (by thresholding).

Connectivity matrix (1 week)

Connectivity matrix (2 weeks)

Connectivity matrix (4 weeks)

Residence time

The time τ for a trajectory in box B_i to move out of A, also known also as the mean time to hit the complement of A (Norris, 1998).

$$(\mathrm{Id} - P|_{\mathcal{A}})\tau/T = \mathbf{1},\tag{5}$$

The time on average to reach a given province starting from any province can be computed using (5) with A set to the target province. We can see the cyclonic motion on the western region (Pérez-Brunius et al., 2018).

Mean expected hitting time (complement of A in (5))

Validation with experimental data (Ledwell et al., 2016) Tracer mostly spreads along the continental slope and across Eastern bassin.

Conclusion

- ▶ Assuming 3-d volume conservation, vertical flows over 1 yr is $\overline{w} = 0.2242 \text{ m/d}$
- Flow is mostly horizontal and ventilated from the Caribbean Sea (also explains why no float escape?)
- ► Fast spreading (≈ 1 yr over the eastern part) as observed by Ledwell et al., 2016
- Main partition is also reveal by the Argo floats

Future plans:

 Evaluation of global circulation from surface drifters (GDP) and deep water floats (RAFOS, SOFAR & ARGO)

Main partition from Argo floats

Push forward in the Eastern corner of the domain

Eigenvalues cut-off

Look at the effect of random noise in the float trajectories on the eigenvalues.

References I

Froyland, G., C. Horenkamp, et al. (2012). "Three-dimensional characterization and tracking of an Agulhas Ring". In: Ocean Modelling 52-53, pp. 69–75, 2012.

Froyland, G., R. M. Stuart, and E. van Sebille (2014). "How wellconnected is the surface of the global ocean?". In: *Chaos* 24.3, p. 033126.

- Ledwell, James R. et al. (2016). "Dispersion of a tracer in the deep Gulf of Mexico". In: *Journal of Geophysical Research: Oceans* 121, pp. 1110–1132.
- Maximenko, A. N., J. Hafner, and P. Niiler (2012). "Pathways of marine debris derived from trajectories of Lagrangian drifters".In: *Marine Pollution Bulletin* 65, pp. 51–62.
- McAdam, R. and E. van Sebille (2018). "Surface Connectivity and Interocean Exchanges From Drifter-Based Transition Matrices".
 In: Journal of Geophysical Research 123, pp. 514–532.

References II

Miron, P. et al. (2017). "Lagrangian dynamical geography of the Gulf of Mexico". In: Scientific Reports 7, p. 7021. DOI: 10. 1038/s41598-017-07177-w.
Norris, J. (1998). Markov Chains. Cambridge University Press.
Pérez-Brunius, Paula et al. (2018). "Dominant Circulation Patterns of the Deep Gulf of Mexico". In: Journal of Physical Oceanography 48.3, pp. 511-529. DOI: 10.1175/JP0-D-17-0140.1. eprint: https://doi.org/10.1175/JP0-D-17-0140.1.