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Introduction

e Traditional view (citation): North Atlantic Deep Water
(NADW) flows equatorward along the Deep Western
Boundary Current (DWBC)

o Upper layer: Labrador Sea Water (LSW) formed
by open-ocean deep convection in the Labrador
and Irminger Seas

o Lower layers: Iceland—Scotland Overflow Water &
the Denmark Strait Overflow Water formed north
of the Greenland-Iceland—Scotland Ridge.

e Recent observations challenge this view: Multiple
interior pathways (not shown in figure!)

e Consequential for the Atlantic Meridional Overturning
Circulation




Lagrangian data sets (RAFOS & Argo) in the North
Atlantic

e Upper layer 2037 float trajectories between [750, 1800] m
o includes 1478 Argo floats park at 1200 m

e Lower layers 302 float trajectories between ]1800, 2500] m
o includes 35 Argo floats park at 2000 m
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How to identify pathways from ohservations
data sets?

e Follow floats from launch locations (Zou S. et al., 2020; Bower A. et al, 2019)

o Limited float trajectory lengths so can’t observe pathways between remote locations
o  Only 97 Argo floats crossed the Labrador Sea and reached 53°N (see, Georgiou S. et al., 2020)
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How to identify pathways from ohservations
data sets?

e The construction of an Eulerian velocity fields

o Loss of resolution (spatial & temporal) due to low coverage and data density
o Only boundary current is “resolved”
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Markov Chain

e Stochastic model where future events only depend
on the current states

e Obtained the Markov chain model by discretizing
the Lagrangian dynamics as described by
observations assuming an advection-diffusion
process

e Evolution of probability densities rather than
individual trajectories
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Transition matrix

65°N
oy x
S o Py =3/5
55°N RN
T i f ¢ S
i ’, \
50°N : ®
o 3 > F, B;
45°N y : : * Con
P ] ~
40°N ‘ i ® =
| ot T
60°W 50°W 40°W 30°W 20°W 10°W B i

Do~ # points in B; at ¢ that evolve to Bj at ¢t + T
W # points in B; at ¢




Transition Path Theory

e Developed to identify and understand rare events

o  Chemical reactions (reactants & products)
o Ocean pathways!

e Reaction events: transition from source A to target B
e Reactive trajectories : pieces of trajectory that
connects directly Ato B
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Domain, sources and targets
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Transition Path Theory

Committors are the basis of the theory and they represent the probability to reach
B before A (or vice versa in backward time).
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Transition Path Theory

The current of reactive trajectories show the most likely transition channel from A
to B (using both forward and backward commitors).
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Transition Path Theory

e Rate of reactive trajectories leaving A or entering B (per time step T).
Can be given the interpretation of 'flux' or 'transport' (upon
multiplication by time step T, and the area covered and height of a
layer)

kA = Z_GS . fAB = 4.9 x 107
[ASTeRV/

e Mean duration of all reactive trajectories are obtain
by dividing the probability of being reactive by the
transition rate.

tAB = 2 ezj;pzq, (T/365) = 3.02 years



Location of sources and targets

|ldentification and quantification of North Atlantic Deep Water pathways:

e Sources

o Locations of open-ocean deep convection
o Deep water formation sites

e Target (50°N)
o  South of the Labrador Sea
o North of the deepening of NAVD so we can target the upper and lower layer with current float
trajectories
e \ertical portion of the Target (33°W)

o Mid North-Atlantic Ocean
o  Quantification of interior pathways



Reactive Current (Upper layer)

e Recirculation from the Labrador to Irminger Sea

e Irminger Sea pathways are more direct and follow the boundary current
o Two branches in the Labrador Sea over 2000-3000 m bathymetry lines
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Reactive Current (Lower layers)

e Flow more organized than what naked-eye inspection of trajectories suggests
e Two connections to the target from east and west of the Reykjanes Ridge
e |ess pathways reach the interior of the North Atlantic
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Pathways exiting the Labrador Sea

Pathways through the DWBC (west of 45°W)

)
o Upper layer: Labrador 78.7% and Irminger 81.8%
o Lower layers: Iceland 94.1% and Denmark 18.8%
e Internal pathways (vertical part of the target)
o Upper layer: Labrador 10.1% and Irminger 8.4%
o Lower layers: Iceland 0.2% and Denmark 29.4%
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Transition rate to target's sections (Upper L)

x10~°

e Most bins of the
domain converge to
the westernmost
section of the target.

e Interior pathways
come from South
(Fleming Cap) and
Reykjavik Ridge
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Transition rate to target's sections (Lower L)

e C(lear separation at
the Reykjanes Ridge

e Interior pathways
mostly come from B 0 B ‘
the South R X B RN,
recirculating after
Fleming Cap and the
Newfoundland Ridge
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Regions reaching target's sections

e Bins are colored according to the most probable target’s section to converge
too (i.e. basins of attraction of each section)

e Most of the pathways reach the westernmost section of the target

e Whole domain connected in the upper layer while the lower layers splits in two

20°W



Mean duration pathways to target at 53'N

e Cyclonic motion(s) in both layers

e |ess probability of looping around the Reykjanes Ridge for the Denmark Strait
Overflow Water

e Reach the targetin 2-3 yrs from Labrador Sea and 3-5 yrs Irminger Sea
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e Existence of interior pathways but with much smaller probabilities

e The NADW flows out of the Labrador is largely accomplished in the form of a
Deep Western Boundary Current (DWBC) consistent with traditional abyssal
circulation theory

e Comparison between the upper and lower branches
o  The upper branch shows recirculation from the Labrador Sea to the Irminger Sea
o Both the upper and lower branch detach at the Flemish Cap
o The lower branch also detaches south of the Reykjanes Ridge
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